Methods for simulating self-organising molecular systems

A. Eriksson, O. Görnerup, K. Lindgren M. Nilsson Jacobi,

J.Nyström, K. Tunstrøm

Complex Systems Group Chalmers University of Technology

Some general ideas behind dimensional reduction

Martin Nilsson Jacobi

Complex Systems Group Chalmers University of Technology

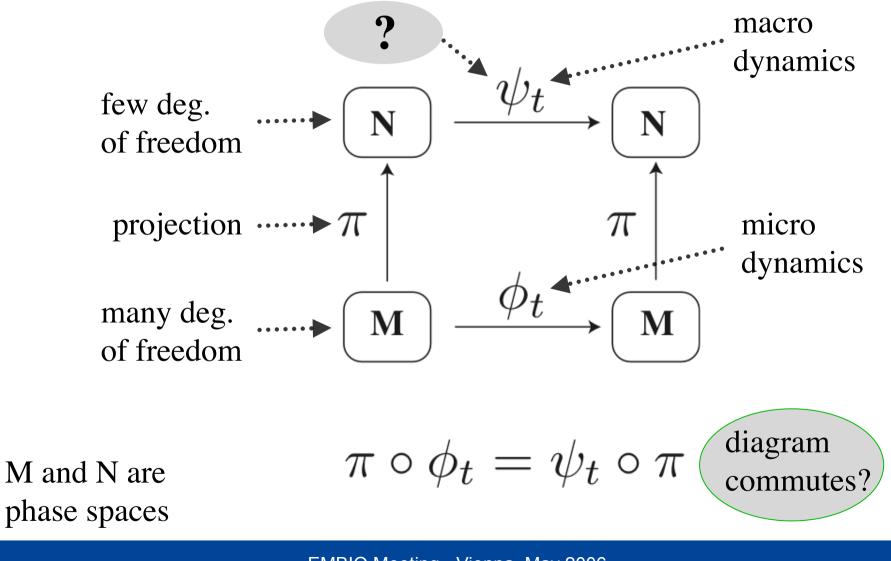
The generic setting

A large number of objects/particles which evolve according to a known (usually deterministic) dynamics:

$$\frac{d}{dt}\begin{pmatrix} m_1x_1\\ \vdots\\ m_nx_n\\ p_1\\ \vdots\\ p_n \end{pmatrix} = \begin{pmatrix} p_1\\ \vdots\\ F_1(x_1,\dots,x_n,p_1,\dots,p_n)\\ \vdots\\ F_n(x_1,\dots,x_n,p_1,\dots,p_n) \end{pmatrix}$$

Chalmers University of Technology

Dimensional reduction



Generic mechanisms

- Global symmetries and conserved quantities (Noether's theorem).
- Local symmetries:
 - Trajectories confined to a volume of phase space where symmetries exist:
 - Trajectories are on an invariant manifold.
 - Trajectories converge quickly to a positively invariant (inertial) manifold.
- Separation on time scales: chaotic (mixing) fast degrees of freedom (DOF) can be treated as (Markovian) noise; or averaging removes the fast DOF.

Most important example for us

- **Particle bases Langevin dynamics** derived from molecular dynamics (dissipative particle dynamics).
- **Principles:** separation of time scales, adiabatic elimination, and decomposable symmetries (momentum conservation).
 - But also a complicated projection that lumps particles together into clusters, which are viewed as coarse grained particles. The clusters exchange (micro-) particles. This gives rise to an affective repulsion between the cluster centers, i.e. the coarse grained particles repel each other.

Self-assembly of amphiphiles using Dissipative Particle Dynamics

Anders Eriksson

Complex Systems Group Chalmers University of Technology

The Dissipative Particle Dynamics model

- Particles corresponds to N_m atoms or molecules.
- Pairwise interactions between particles within a finite range.
- Position and momentum of particles obey a Langevin equation:

Water in Dissipative Particle Dynamics

- Several water molecules are grouped together to form a DPD water particle
- The water-water potential is obtained from the Lennard-Jones potential of individual atoms, averaged over the atomic motion in short time intervals.
- Equation of state for a system of DPD water particles in equilibrium is approximately (for ρ > 2):

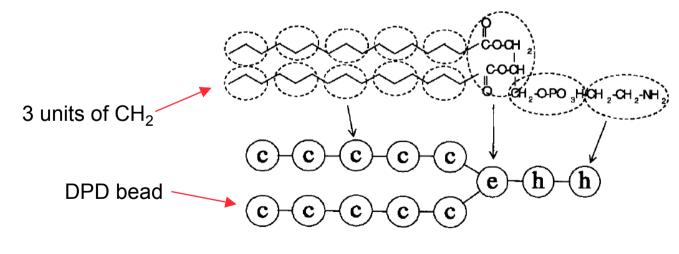
 $P = N_m \rho k_B T + a \alpha \rho^2$, where $\alpha \approx 0.101$

One may use this to determine *a* from the isothermal compressibility of water.

Coarse-grained models of amphiphiles

- Molecules with important internal structure, such as amphiphiles, needs to be represented by several beads.
 - Typically chosen so that the partial volumes agree as closely as possible

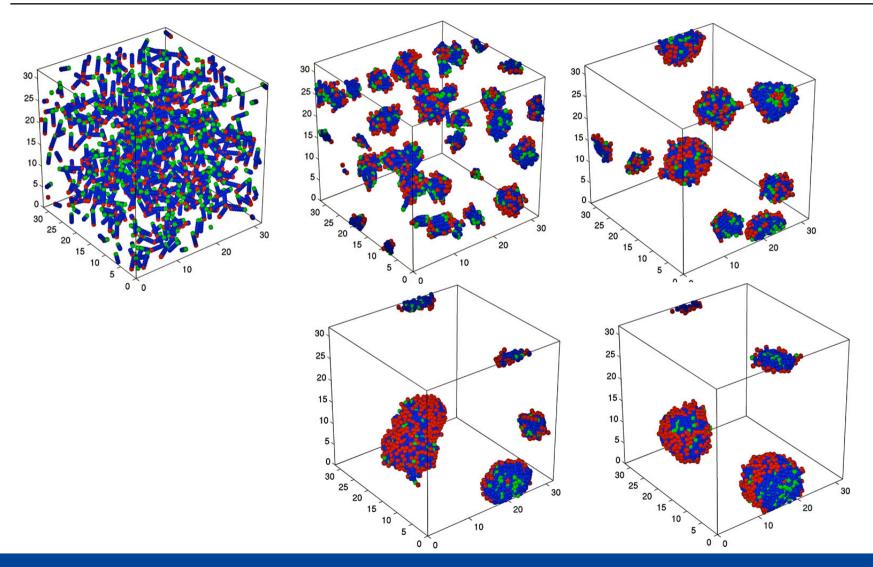
DPD representation of phosphatidylethanolamine



From Groot and Rabone 2001, Biophys. J. 81, p. 728

Chalmers University of Technology

Self-assembly of lipids into micelles



Clustering as a mechanism for repulsion between particles in DPD simulations

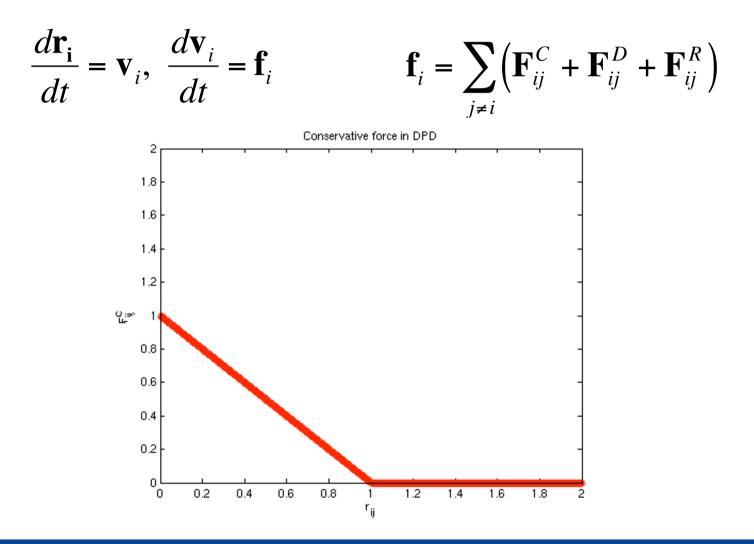
Johan Nyström

Complex Systems Group Chalmers University of Technology

Objectives

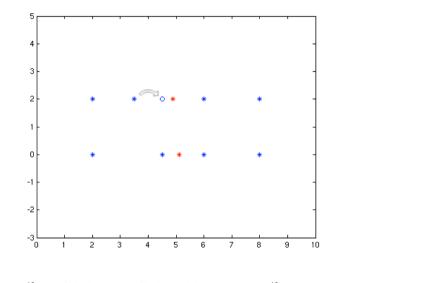
- To connect the Dissipative Particle Dynamics (DPD) simulation technique with an underlying microscopic description.
- To show that clustering can explain repulsion between DPD particles.

Standard DPD

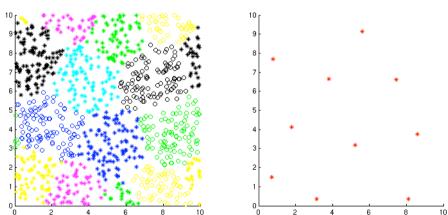


Model

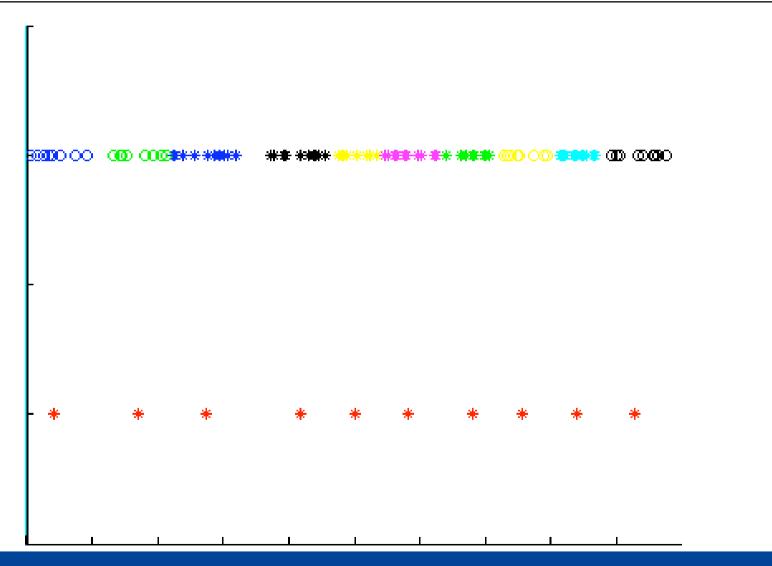
 Step 1: Move underlying particles



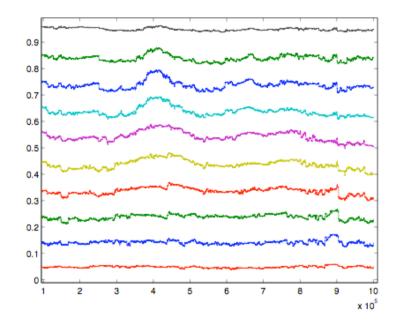
 Step 2: Group particles into clusters



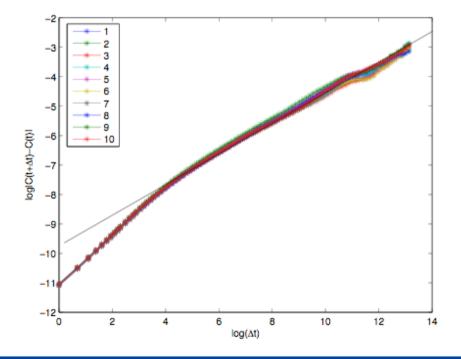
Results



Results



$$\left|\Delta c\right| = a \left(\Delta t\right)^d$$



Work in progress

- Derive an SDE, describing the cluster motion in the 1-D case.
- Use data from e.g. an MD simulation to move the underlying particles.
- Look for hydrodynamic modes.

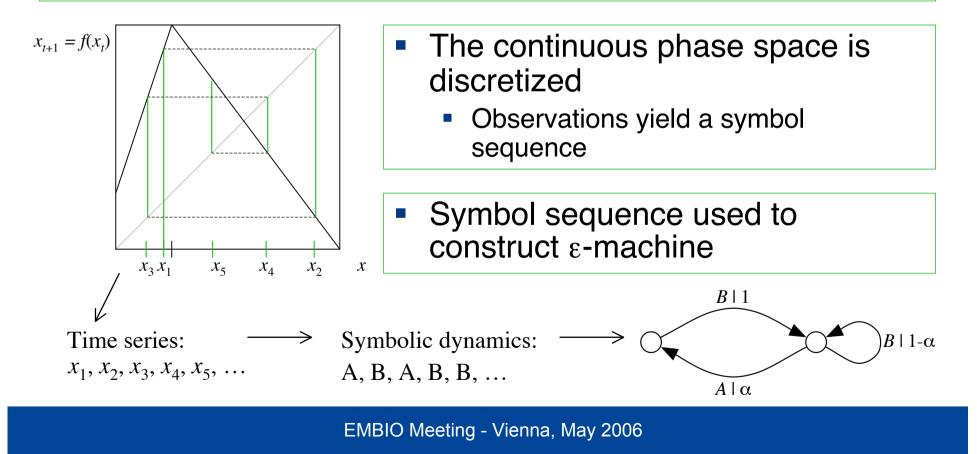
Phase space partitioning in the context of simple dynamical systems

Olof Görnerup

Complex Systems Group Chalmers University of Technology

System - Encoding - Reconstruction

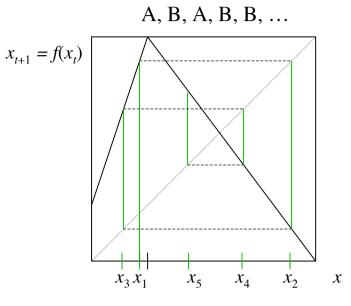
- Simple time-discrete dynamical systems are considered
 - Exemplified by iterated maps
 - Piecewise linear approximations of underlying systems

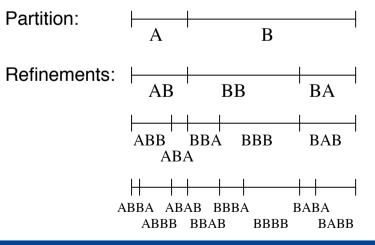


Partitioning

- One wants a partition such that no relevant feature of the original dynamics is lost
- Map F with phase space X
- Partition $\mathcal{B} = \{B_1, B_2, ..., B_n\}$
- Alphabet $\mathcal{A} = \{a_1, a_2, ..., a_n\}$

Elements of 1st refinement under *F*: $B_{a_i} \cap F^{-1}(B_{a_j}) \ \forall a_i, a_j \in \mathcal{A}$ Elements of 2nd refinement under *F*: $B_{a_i} \cap F^{-1}(B_{a_j}) \cap F^{-2}(B_{a_k}) \ \forall a_i, a_j, a_k \in \mathcal{A}$ *B* can be refined indefinitely under F: *Generating partition*



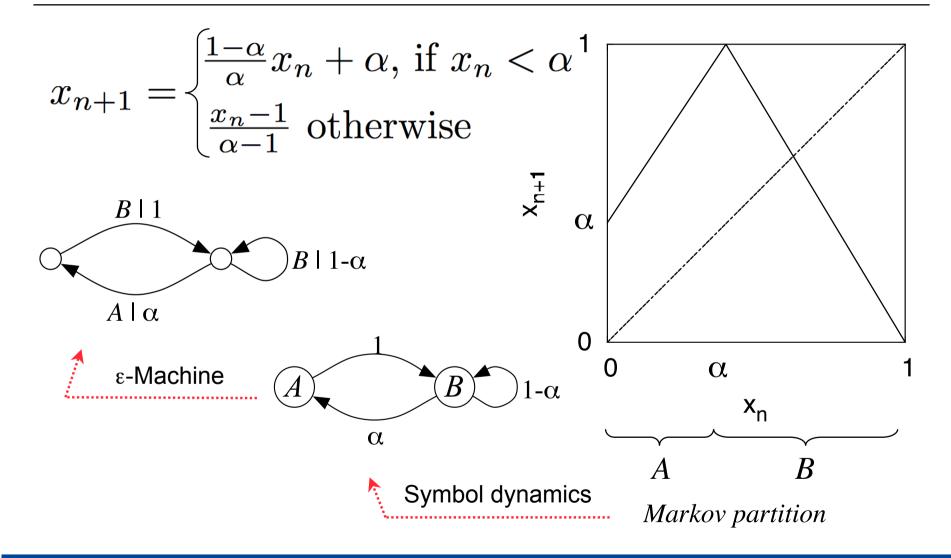


Markov partition

- Generating partition $\mathcal{B} = \{B_1, B_2, ..., B_n\}$ where each $\mathbf{F}(\bar{B}_i)$ is the union of some \bar{B}_i 's for all *i*
- Borders map to borders
- Enables a graph representation of the dynamics
- Conditional probability distribution of future symbols depends only on the current state

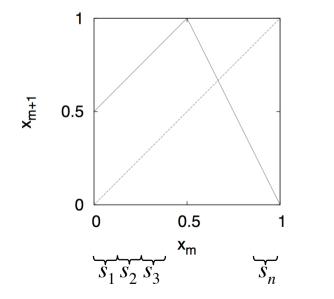
Chalmers University of Technology

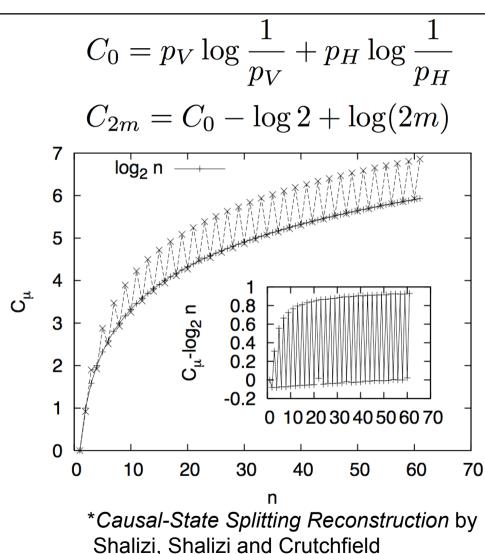
Roof map - Simple Markov



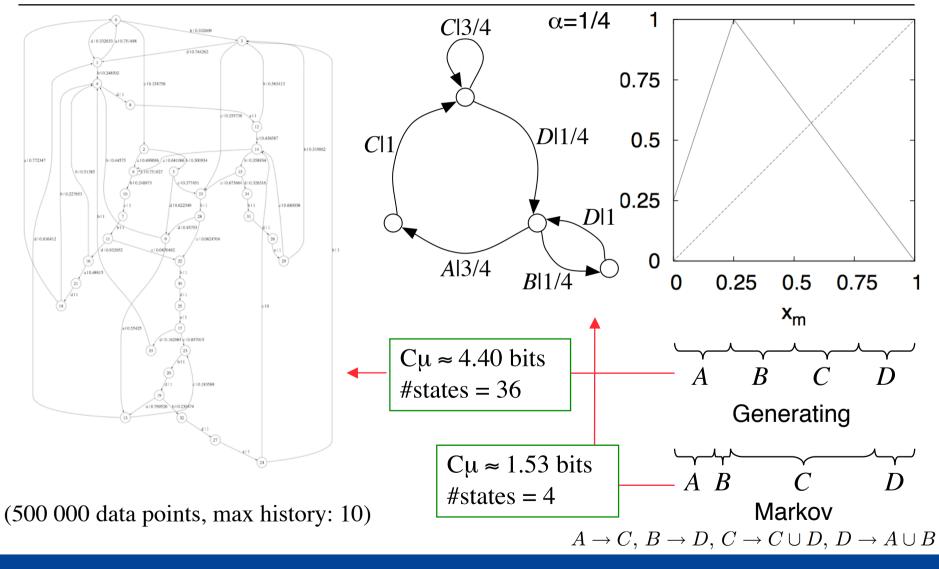
Roof map - Alphabet size dependence

- For α=1/2
- Partition evenly
- *n* symbols
- Reconstruction of ε-machine with CSSR algorithm*

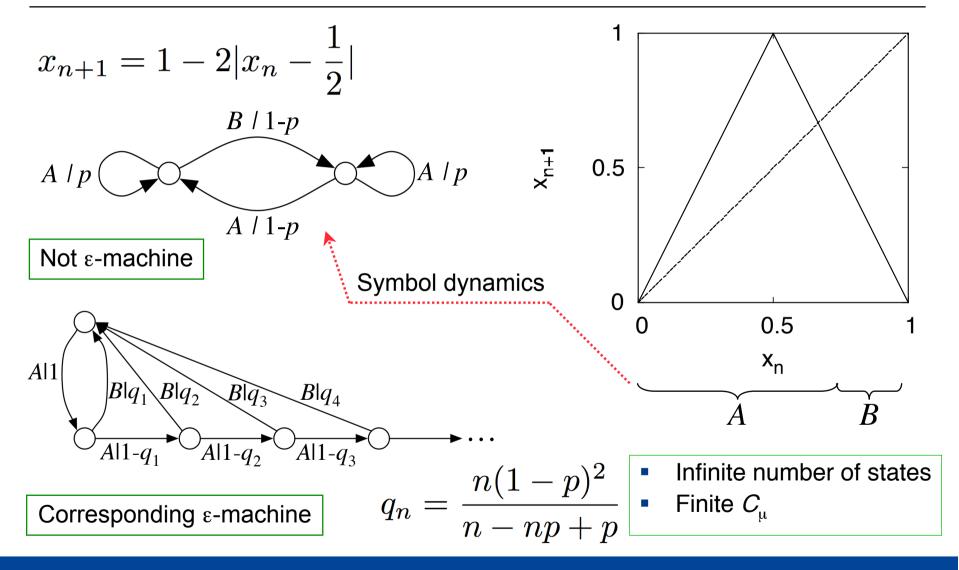




Roof map - Generating versus Markov



Tent map - Non-determinism



Recapitulation and conclusions

- Choice of partition crucial
 - Generating Good
 - Markov Better
 - Neither Bad
- General issue: Difficult to know if good partition is used
 - Dynamics F typically not know explicitly
- Compact exact non-deterministic representation may not be found